
Aplicações Nativas com
Java

William Siqueira @ github.com/jesuino

● Banco de Dados @ FATEC São José dos Campos
2010

● Software Engineer @ Red Hat
● Colaborador do JUG Vale jugvale.com
● Colaborador do SJCDigital github.com/sjcdigital
● Escreve em alguns blogs
● Palestrante JavaOne, The Developers Conference,

FISL e outros
● Opensource github.com/jesuino

https://jugvale.com/
http://github.com/sjcdigital
http://github.com/jesuino

● Review how Java Compilation process works
● What is native compilation
● Why going to native
● Using GraalVM to generate native bits
● GraalVM limitations
● Tools to Port existing Java applications to native

○ Gluon and native JavaFX
○ Quarkus and native Microservices applications
○ Native Business Automation applications with Kogito

● Analysis of a native application

How Java Compilation Process Works

Java Code is compiled to Bytecode and later Bytecode is interpreted by the JVM

HelloTDC.java

javac HelloTDC.java

java HelloTDC

Any operating system with a supported JVM can run HelloTDC.class

HelloTDC.class

Java Bytecode crash course
https://www.youtube.com/watch?v=e2zmmkc5xI0

What is native Compilation

Java Code is compiled to Bytecode and Bytecode is compiled to the targeted
device binary format HelloTDC.java

javac HelloTDC.java

tool to compile to native

a specific binary file or package is generated for the target
platform

Why create native Java apps

❖ Improved performance
❖ Less requirements on target platform
❖ Usually smaller applications
❖ Can run natively on cloud platforms such as Kubernetes

➢ Java was losing space in the cloud and serverless architectures due performance
reasons. With Quarkus, which we will talk later, we are back in the game!

GraalVM
High-performance polyglot VM

Can Compile Java applications directly to binary using the Substract VM. But is
much more than this!

Compiling Java to Native with GraalVM

GraalVM limitations

Can you build real world applications with these limitations?

Creating JavaFX Native Applications

Gluon tooling can help you to generated native JavaFX Applications for Android,
iOS, Linux and Windows (using GraalVM)

https://gluonhq.com/a-boost-for-java-on-the-client

https://gluonhq.com/a-boost-for-java-on-the-client

Creating JavaFX Native Applications
Using Gluon VM for Java 11 you are able to create native Java application from
[1]. To create native packages:

mvn clean client:compile client:link

And then run with:

mvn client:run

[1] https://github.com/gluonhq/client-samples

https://github.com/gluonhq/client-samples

Quarkus

Quarkus native applications
Quarkus is a Java platform to create microservices. With its extensions you can
create all kind of native applications:

● Database access
● REST APIs
● Business Applications
● Messaging clients
● Microservices (implements Microprofile)
● ...

To generate Quarkus native applications you will need GraalVM. You focus on
your code and Quarkus will make what is required to compile your code to a native
image prepared to run on Kubernetes.

Quarkus #Facts
❏ Container First

❏ Ready for Docker and Kubernetes

❏ 10x lighter
❏ The final JAR is optimized during and is faster than usual applications

❏ 100x faster
❏ Can be compiled to a native package, resulting in high performance applications

❏ Low memory usage and fast Startup
❏ Live Reload

❏ Run Quarkus in development and your changes are automatically reloaded, no need to server
stop/start

❏ Developer Joy

See more in quarkus.io

How fast is Quarkus

it is supersonic, subatomic Java

How can I create Quarkus applications
● Maven and VS Code plugins
● code.quarkus.io

Hello Quarkus application

Business Automation with Quarkus

You can create native business rules and native business processes using
Quarkus with the Kogito extension.

Business Process and Rules?

jBPM is a Java platform for creation, execution and
management of business processes and cases
(dynamic business processes)

Drools is a Java platform to creation, execution and
management of business rules using DMN, DRL
(domain language), decision tables and more

Kogito and Quarkus brings jBPM and Drools to run natively in the cloud! See kogito.kie.org

Hello Kogito Application

Going native with Quarkus
Quarkus requires GraalVM installation

Get GraalVM 19.2.0.1 for native compilation

Build the project with flag -Pnative

mvn clean install -Pnative

The JUG CFP example
JUG CFP is a real world application: mvn clean install -Pnative

The JUG CFP example
Final package sizes

● Java: 43M + JVM size

● Native: 68M (no JVM required)

The JUG CFP example
Startup time

● Java: 2.780s

● Native: 0.509s

NOTE: Swagger UI may not be used in production

The JUG CFP example
Memory usage (after first request)

Java: 8579668K

Native: 1083668K

Conclusion
● Native applications bring better performances for Java cloud applications
● It is not a silver bullet
● The compilation time needs to be considered
● Quarkus makes easy to use real world and complex libraries in native mode

Thanks!

